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Natural Continuous Extensions 
of Runge-Kutta Methods* 

By M. Zennaro 

Abstract. The present paper develops a theory of Natural Continuous Extensions (NCEs) for 
the discrete approximate solution of an ODE given by a Runge-Kutta process. These NCEs 
are defined in such a way that the continuous solutions furnished by the one-step collocation 
methods are included. 

1. Introduction. We consider the following initial value problem (IVP) for ODEs: 

(1) (y (t) = t~~0 f(t, y (0)) 
yAto) =you 

where yo, y and f are m-vectors and t is a real variable. Further, we suppose that f 
is as smooth as necessary both in t and in y. 

A v-stage Runge-Kutta (R-K) process is a means to find an approximation y5 to 
the value of y at the point to + h. 

Following the notation of Butcher [4], we write 
V 

(2) g() f to + cihI, yo + h E ajig(i)), i= 1, *,v., 

(3) 3=y0 + h big('), 
i=1 

where g(i), i = 1,..., v, are m-vectors, the numbers aij, bi characterize the method, 
and ci = 1 ai ij = 1, ..., V. The integer v is the number of stages. 

If the R-K method is accurate of order p ( > 1), then Iy(t0 + h) -j = 0(hP+ ). 
The symbol j. I stands for any norm on Rm. By iterating this process, one usually 
finds an approximate solution on a mesh A t = { <to < ... < t = T} of the 
interval [tog T], such that 

(4) max I y-y(t) I= o(i |i), 
0 < n < N 

where jAI := max<n.<,Nltn - tn-1I and the yn's are the approximate values. 
In this way one gets information of the solution y on a discrete set of points. On 

the other hand, it is sometimes useful to have a continuous approximate solution 
available. For this purpose one could use interpolation at nodal values; that involves 
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a number of mesh points and the resulting method has the characteristics of a 
multistep one. Nevertheless, it is well-known that some implicit R-K methods are 
equivalent to collocation methods (see Wright [13]). Therefore, they naturally give 
successively a continuous extension of the approximate solution, without any extra 
evaluations of the function f. 

The following question then arises. Does there exist for each R-K process a 
continuous extension given successively by the method itself, without any extra 
evaluations of the function f ? 

A kind of answer has been recently given by N0rsett and Wanner [10], since they 
have proved that a large class of R-K processes can be considered as a somewhat 
perturbed collocation (PECO-method). Their definition includes ordinary colloca- 
tion, as a particular case. However, if the number of stages is v, they always find a 
polynomial of degree v. This fact causes some troubles, particularly with explicit 
methods, since it often happens that the derivatives of the perturbed collocation 
solution are unbounded for h -* 0. 

The aim of this paper is to provide Natural Continuous Extensions (NCEs) of the 
solution given by the R-K process (2)-(3), which, in case of equivalence with 
collocation, continue to include the collocation solution and, in a certain sense, 
behave like it in other cases. However, we do not look at the problem from N0rsett 
and Wanner's point of view. 

To formulate our definition, we need the following results. 
Consider the one-step collocation method at v Gaussian points (which is equiva- 

lent to the unique v-stage R-K process of order p = 2v) to approximate the solution 
of (1) at to + h. The collocation solution u, which is an m-vector polynomial of 
degree v, satisfies the following error bounds (e.g., Guillou and Soule [7], Hulme [8], 
N0rsett and Wanner [9] and [10]): 

(5) max y(k)(t) - U(k)(t) = O(hP+l-k), k =0 
to t to + h 

and 

Iy(to + h) - u(to + h) | = 2P+1) 

which is often referred to as the phenomenon of superconvergence at the nodes. 
By using the same arguments of N0rsett and Wanner [9] and [10], the author [14] 

has proved the more general superconvergence result: 

(6) 
f h 

G(t)[y'(t) 
- 

u'(t)] dt = 0(h2P+I) 
to 

for every sufficiently smooth matrix-valued function G. 
Equation (6) can be regarded as a sort of asymptotic orthogonality condition. 
Our definition of NCE is given in such a way that conditions similar to (5) and (6) 

are required. 
Definition 1. The v-stage R-K process (2)-(3) of order p has a NCE u of degree d 

if there exist v polynomials bi(O), i = 1,..., v, of degree < d, independent of the 
function f, such that, by putting 

(7) u(to + Oh): yo + h Ebj(O)g('), 0 < 0 < 1, 
i=1 
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the following statements hold: 

(8) u(t0) = y0 and u(t? + h) = Y; 

(9) max Iy'(t) - u'(t)|= O(hd); 
to t to + h 

(10) fto h G(t)[y'(t) - u'(t)] dt = O(hP+l) 
to 

for every sufficiently smooth matrix-valued function G. 
It is easily seen that condition (9) implies the following error bounds for the higher 

derivatives of the NCEs: 

(11) max Iy(k)(t) - u(k)(t) 0 = O(hd-k+1), k = 2,..., d, 
to < t < to + h 

and, obviously, u(k)(t) 0 for k > d + 1. 
Therefore all the derivatives of the NCE u are uniformly bounded as h 0. 
Moreover, by integrating (9) and by (8), we have also 

(12) max Iy(t) - u(t)|= O(hd+l), 
to t to + h 

while simple integration by parts, together with (10) and (8), yields 

(13) f h 
G(t)[y(t) - u(t)] dt = O(hP+l) 

to 

for every sufficiently smooth matrix-valued function G. 
After proving the existence of NCEs for all R-K processes (Section 2), we find the 

relationships with collocation and with PECO-methods, and give the NCEs for some 
of the most popular explicit R-K processes (Section 3). 

Section 4 is devoted to applications. First we prove a theorem which allows us to 
extend to all R-K processes some results of Bellen [2] and Vermiglio [12] concerning 
one-step collocation and one-step subregion methods, respectively, applied to DDEs 
(delay differential equations). Furthermore, some recent results of the author [14] 
concerning the order of uniform convergence and stepsize control for the one-step 
collocation method are extended to all R-K processes. 

2. On the Existence of NCEs. In this section we prove the existence of NCEs for 
all R-K processes. 

First of all,we recall some general results which were published by Butcher [4] and 
[5]. He considered, for the study of the v-stage R-K process (2)-(3), the expansions 

(14) y(t0 + h) = y0 + Y xaF- 

and 

(15) Y= + E #4F( . 

The summations are over the different elementary differentials F for the function f, 
arranged in a sequence of nondecreasing order r. 1 is the corresponding elementary 
weight, while a and /B are numerical coefficients independent of the function f. 
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PROPOSITION 2. Each elementary weight 1 has the form 
1' 

= ? l?i 

i=1 

where ?(i) is independent of bj, j = 1,., P. 

PROPOSITION 3. The R-K process (2)-(3) is of order p if and only if 

0 = a//3r 

for all elementary weights 1 corresponding to elementary differentials F of order r < p. 

PROPOSITION 4. Let the R-K process (2)-(3) be of order p. If ? = Ep= l bi ) is an 
elementary weight corresponding to an elementary differential F of order r < p - 1 and 
s is an integer such that 1 < s < p - r, then, by putting 

P 

i=1 

we get an elementary weight corresponding to an elementary differential F of order 
r + s and, moreover, (r + s)$ = r O. 

In view of (7), it is quite easy to verify that the following continuous version of 
(15) holds: 

(16) u(to + Oh) -y?o + / 
0()F( _ < h 1, 

where, by Proposition 2, 

(17) O(O) - bi(O)J'', 0 < 6 0 1, 
i=1 

are continuous elementary weights. 
Moreover, we have the continuous version of (14) 

(18) y(t0?+ h) yo+EaF r!, O< s< 1. 

Therefore, by comparing (16) and (18), one can easily see that the two conditions 
(9) and (10) are equivalent to 

(19) 0'(O) - ar-1/13 for all 1 corresponding to elementary 
differentials F of order r < d; 

together with 
a 

JO s'(O)da= for all 1' corresponding to elementary 
(20) o1(r s) differentials F of order r = d + 1, . . ., p 

and for every s = 0,. .., p -r. 

Observe that, if d = p, condition (20) must not be considered. 
As far as condition (8) is concerned, it is clear that it is equivalent to 

(21) bi(0) = 0 and bi(1) = b1, i = ...V. 

Hence, by (17), we have 

(22) ((0) = 0 and ((1) = P for all V. 
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Observe that, if d = p - 1, then (22) and (19) imply also (20). 
If p is the order of the R-K method (2)-(3), then we define 

q:= [(p+1)/2] 

where [ stands for " the integer part of". 
Moreover, we define v * as the number of distinct values of the numerical 

coefficients ci, i = 1, .. ., v. One obviously has v* < v. 

THEOREM 5. If u is a NCE of the v-stage R-K method (2)-(3) of order p, then its 
degree d must satisfy 

(23) q<d min{v*,p}. 

Further, the polynomials b'(0), i = 1, .. ., v, span the whole space Lld-l of polynomi- 
als of degree < d - 1. 

Proof. Butcher [4] has shown that, for every r > 1, there exists an elementary 
weight of the form 

V 

D= bic[1 (if cj* = 0, then c* := 1). 
i=1 

Hence, by Proposition 2, and by (17) and (19), we can state 
v 

(24) ? b;(0)c[-1 _ r 1 < r < d 
i=1 

since in this case a = /3 = 1. 
It is clear that the matrix C:= ((c,- 1)) satisfies 

rank(C) = min v*, d}. 

Moreover, if we choose d distinct values O., 0 < Oj 1 (00:= 1), we can consider 
the matrices B:= ((b,(01)))T and e ((jr1)). We obviously have 

rank(B) < d and rank(E ) = d. 

On the other hand, (24) gives 

(25) BC= e 

which, by well-known arguments of linear algebra, implies 

d < min{min{v*, d}, rank(B)}. 

This yields both d < v* and rank(B) = d. 
The order of the R-K method being p, the inequality d < v*, by (8) and (12), 

implies d < min{ v*, p}. Moreover, rank(B) = d states that at least d polynomials 
among the b'(0)'s are linearly independent. Since they all have degree < d - 1, 
they span the whole space rI-d-l* 

In order to prove q < d, we observe that, for r = d + 1, condition (20) must be 
satisfied for every s = 0, ... , p - d - 1. This imposes p - d linearly independent 
conditions to the polynomial D'(0), the degree of which is < d - 1. Thus, we must 
have p-d < d, and then q < d. El 

This theorem gives a range for the possible degree d of a NCE. However it is not 
true that there exists a NCE for every d satisfying (23). 

As far as the existence of NCEs is concerned, we have the following theorems. 
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THEOREM 6. Let p > 2. If the R-K process (2)-(3) has a NCE u of degree d > q, 
then it has also a NCE ii of degree d' for every d' = q, . . ., d - 1. 

THEOREM 7. Every R-K process (2)-(3) has a NCE u of minimal degree q. 

Before proving these theorems, we remark that Theorem 7 gives a positive answer 
to the question we have posed in Section 1. 

We shall need the following lemma to prove Theorem 6. 

LEMMA 8. If n is an integer such that q S n < p - 1 (this can be true for p > 2), 
then there exists a linear projector P, of the space Co of the continuous functions in 

[0, 1] onto the space H n-I of polynomials of degree < n - 1, such that 

(26) |fOsPnf(O)d6f Osf(O)dO, s=0,...,p-n-1, 
0 0 

foreveryf E Co. 

Proof. Since [( p + 1)/2] S n < p - 1, we have 1 p - n < [ p72]. On the other 

hand [ p72] s< [( p + 1)/2] and hence 1 < p - n < n. This is sufficient to prove the 
lemma, provided other 2n - p linear conditions (if 2n - p > 0), linearly indepen- 
dent of those defined by (26) on the space I n-i, are chosen. E 

Proof of Theorem 6. Since q < d' < d < p, by Lemma 8 we get the existence of a 
linear projector Pd. of CO onto LId' -1 such that (26) holds with n = d'. Put 

b-(0): -PdAJb(), b (O):= 0, i = 
19 ... v, 

and consider the polynomial (see (7)) 

V 

Fi(to + Oh):- yo + h E i8g, 0 <' 0 < I1. 
1=1 

By (17), we can state that the corresponding continuous elementary weights are 

(27) d'0(O) PdA'(O), CD() = 0. 

Since (19) holds for u and since Pd' reduces to the identity map on the space 
rr d' -1' by (27) we can state also 

4'(0)- jB for all 4) corresponding to elementary 
differentials F of order r < d'. 

That is, (19) is verified also for ui. 
Moreover, since (19) and (20) hold for u, we have that 

J 9s4Y( 0) dO = a for all 4) corresponding to elementary 
0 /l(r ? s) 

differentials F of order r = d' + 1,..., p 
and for every s = 0 ..., p-r. 

Since p - r < p - d' - 1, by Lemma 8 and by (27) we have that (20) is satisfied 

also by iu. 
To complete the proof, observe that p - d' - 1 > 0. Thus, for s = 0, Lemma 8, 

together with (21) for u, yields 

bi(1)= f b;'(0)d = f| b'(0) dO = bi(1) = bi, i = 1, ... . v, 
0 0 

that is, (21) is satisfied also by ii. C 
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Proof of Theorem 7. For every i = 1,., v, consider the unique polynomial bi(O) 
of degree < q which satisfies 

(28) bi(?) = 0 

and 

(29) f 9sb,(9) d = bics, S = O,...,q - 1. 
0 

Then, by using (7), we get a polynomial u of degree < q. 
By (29) for s = 0 we get bi(l) = bi, so that, by (28), Eqs. (21) and (22) hold. 
Let 1 < r < p and let 1(D) be a continuous elementary weight corresponding to 

an elementary differential F of order r. Then (17), together with (29), yields for 
r + s < p, 

V V 

J Os( (O) d V =slb'(0) dOVt(i) bjcs'), 

which, by Proposition 4, is an elementary weight 1' corresponding to an elementary 
differential F of order r + s < p. 1 is such that (r + s)1' = r1, where, by (22), 
(D = 4>(1). Hence, since 1D = a/lfr by Proposition 3, we get 

rl a 
(30) J OsI() dO = if r + s < p and s = 0,..., q - 1. 

o 13~~(r +s) 

Since p - q - 1 < q - 1, we can conclude that (20) holds with d = q. 
On the other hand, for 1 < r < q, we have q - 1 < p - r. Thus (30) implies that 

the polynomial V'(O) - aor-l//, the degree of which is < q - 1, lies in the kernel 
of q linearly independent linear functionals; this implies (19) with d = q. 

The existence of a NCE u of degree q is proved. E 
Observe that both proofs are of a constructive type. 
In general, nothing can be said about the uniqueness of the NCEs and, in fact, 

there are examples of nonuniqueness. The only uniqueness result is included in 
Theorem 9 (next section). 

3. Collocation, Perturbed Collocation and NCEs. Further Examples. In order to 
simplify the discussion, we briefly recall the definition of PECO-method given by 
N0rsett and Wanner [10]. 

They define a perturbation operator P: rl , -- LI rl by 
P t - to 

Pu(t): u(t) + E Nj(O)u(j)(to)hj, : h ? < 1, 
j=1 

where the Nj(O)'s are polynomials of degree < v. Then the PECO-method is 

(u( to):= Yo' u E Inp, 

(31) U'(t0 + cih) = f(to + cih, Pu(to + cih)), i = 1, ..:, v, 

y u(to + h), 

where the c 's are assumed to be distinct. They define the polynomial M(0): 

FHi =1(- ci), which is of degree v. 
The PECO-method (31) is equivalent to a suitable R-K process (2)-(3) which has 

the same c 's (hence v* = v) and is such that g(i) = u'(to + cih), i = 1,.. ., v. 
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In particular, for NJ(8) 0, j = 1,..., v, that is, for P = I (identity map), 
ordinary collocation is obtained. 

THEOREM 9. Let the v-stage R-K process (2)-(3) of order p be such that v* = v < p. 
Then it has a NCE u of degree v if and only if it is equivalent to a PECO-method (31) 
such that NJ(@)-O. j = 1 ... ., v- 1, and, if v < p, such that 

1 OsM(O) dO =11 OsN(O) dO = 0, s = 0... .,p - v -1. 
0 0 

Moreover, in this case, the NCE u of degree v is unique and it is just the perturbed 
collocation solution. 

Proof. First of all, we observe that d = v satisfies the necessary condition (23), 
since (as is well-known) v > q. 

Consider, like N0rsett and Wanner [10], the Grobner-Alekseev nonlinear varia- 
tion-of-constants formula. If u is a function such that u(to) = yo, then 

(32) y(t) - u(t) = f K(t, x)[f(x, u(x)) - u'(x)] dx, 
to 

where K( t, x) is a variational matrix depending on u such that K( t, t) )I. 
By differentiating (32) we get 

y'(t) - u'(t) = f K(t, x)[ f(x, u(x)) - u'(x)] dx 

(33) 
0 

Then, by multiplying (33) by a sufficiently smooth matrix-valued function G, after a 
small calculation we obtain 

f|+ G(t)[y'(t) - u'(t)] dt 

(34) t to~ ~~t~ 

= 1t0+h H(to + h,x)[f(x,u(x)) -u '(x)] dx, 
to 

where 

H(t, x): G(x) + J G() o -K((, x) d(. a t 

If ) By the equivalence of the methods, (8) follows for the perturbed collocation 
solution u. 

Like N0rsett and Wanner (Theorem 10 in [10]), we split (34) in two parts: 

to 
?h G(t)[y'(t) - u'(t)] dt = (I) + (II), 

to 

where 

(I):= J H(to + h,x)[f(x,Pu(x)) - u'(x)] dx 
to 
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and 

(II):= f?tohH(t0 + h, x) [ f (x, u(x)) -f (x, Pu(x))] dx 
o 

= - 
f?to hH(to + h, x) o --f(x, u(x))N( h 

- 
to) u()(to)hvdx 

+ o(h2v+l). 

Since (as is well-known) p < 2v and since the hypotheses of Theorem 10 in [10] are 
satisfied, we can similarly conclude that (10) holds for u. 

Analogously, we split (33) in two parts: 

y'(t) - u(t) = (III) + (IV), 

where 

(III):= f at K(t, x)[f (x, Pu(x)) - u'(x)] dx + f (t, Pu(t)) - u'(t) 
to 

and 

(IV):= f -tK(t, x)[f(x, u(x)) -f (x, Pu(x))] dx + f (t, u(t)) -f (t, Pu(t)) 
0 

o~~~~~~~~~~~~t 
= -f l a-K(tx)o - -f(x, u(x))N ( x 

t)u(v)(t )hvdx 

-a f(t, u(t))N( h to u(v)(to)hv + O(h2v). 

By Proposition 9 in [10], the derivatives of u remain uniformly bounded as h -* 0. 
Thus (IV) = O(hV) and, since f (t, Pu(t)) - u'(t) vanishes at v points (see (31)), also 
(III) = O(h ). Therefore (9), too, is satisfied by u. We can conclude that the 
perturbed collocation solution u is a NCE of degree v. 

Only if ) If a NCE u of degree v exists, then (24) becomes 

b'(O)ci _9r-1 r = 1,...,v. 

Therefore, all the three matrices in (25) are square of dimension v, and C is 
invertible, since v* = v. In particular, by choosing Oi := cj, j = 1, ...., v, we have 
0 = C and hence B = I. This implies that the polynomials b'(0) are uniquely 
determined and that they must coincide with the Lagrange polynomials relative to 
the nodes ci. Hence, (7) yields u'(to + cih) = g(i), i = 1,..., v. Moreover, the R-K 
process (2)-(3) turns out to be interpolatory and thus, by Theorem 6 in [10], it is 
equivalent to a PECO-method (31), the solution ui of which satisfies fi'(to + cih) = 

g(i), i=1,...,v.This yields 4=u. 
Since (9) holds for u and since, by (31), also (III) = O(hv), it is immediately seen 

that one must have Nj(O) 0, j = 1, ...., v - 1, in order that (IV) = O(hv), too. 
The R-K process (2)-(3) being interpolatory of order p, the quadrature formula 

with the nodes ci and weights bi is exact for polynomials of degree < p - 1. This 
implies JO1 OSM(O) dO = 0, s = 0,..., p - v - 1, and (I) = O(hP+1). It follows that 
(II) = O(hP"l), from which also fO sN(O) dO = 0, s = 0,..., p - - 1. [1 
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This theorem, together with Theorem 7, shows that every R-K process (2)-(3) of 
optimal order, that is such that v = q (e.g., those in Butcher [5] and, in part, [6]), has 
a unique NCE, which is just the perturbed collocation solution of the equivalent 
PECO-method. Recall that, if p = 2v, then the equivalent PECO-method is the 
collocation method at v Gaussian points. 

By Theorem 6, if a R-K process (2)-(3) is not of optimal order (that is v > q) and 
satisfies the hypotheses of Theorem 9 and the respective sufficient and necessary 
condition, then it has more than one NCE: it has a NCE of degree d for every 
d = q, ...., v. The NCE of degree v is unique; it is the perturbed collocation solution 
of the equivalent PECO-method (which, in particular, may reduce to a collocation 
method). 

It is interesting to point out that, whenever a R-K process (2)-(3) is equivalent to 
a PECO-method such that NJ*(0) - 0 for a j * < v - 1, the perturbed collocation 
solution is not a NCE. 

We conclude this section by listing all the NCEs for some of the most popular 
explicit R-K processes (2)-(3), that is, methods for which al, = 0 for i < j. 

1-stage R-K process of order 1 (Euler method). 
d=q=iP=p=1 b1(O) 0. 

2-stage R-K processes of order 2. 
d =q =1 b,(O) bO, i =1,2. 

d p 2{ b1() (b- 1)02 + 0 

b2(0) b202. 

3-stage R-K processes of order 3 (with C2, c3 # 0). 

d=q=2 bJ(O)=w102+(b1-wW)0, 1=1,2,3, 

where w: - [X(c3 - C2) + C2]/2C2C3, W2 X/2C2, w3 := (1 - X)/2c3 and X E R. 
Here we have a one-parameter family of NCEs, that is, an example of nonunique- 

ness of NCEs of minimal degree q (observe that P > q). The NCE furnished by 
Theorem 7 is 

b,(0) 3(2ci - 1)b,02 + 2(2 - 3c,)b,0, i = 1,2,3, 

which corresponds to the particular value X = 6c2(2c2 - 1)b2. 
In this case no NCE of degree v = p exists. 
4-stage R-K processes of order 4. 

d = q = 2 bl(O) 3(2c, - 1)bi02 + 2(2 - 3cj)bi, i = 1,2,3,4. 

For d = q the NCE is only the one furnished by Theorem 7. 

d 3 Jb1(0) 2(1- 4b1)03 + 3(3b1 -1) 2?+, 
bl(0) 4(3ci - 2)bi03 + 3(3 - 4c,)b102, i = 2,3,4. 

Also in this case no NCE of degree v = p exists. 

4. Applications. The main application of the NCEs can be found, in our opinion, 
in the next theorem. 

Before stating it, we consider the following IVP with driving equation: 

() z( ) = () ( T )), 

Z('o) = zo 
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where E(.V)(Tx): F(T, x, y((i(T)), y'(+((T))), z, zo and F are m-vectors, X is a 
real variable and y is the solution of (1). Also in this case F is supposed to be 
sufficiently smooth. Moreover, the function 0 is one-to-one between [O, T0 + p] and 

[to = q4(T0), to + p = k)(Tm + 0)] and is sufficiently smooth together with its inverse 

THEOREM 10. Consider a R-K process (2)-(3) of order p to approximate the solution 
of (1) at the point to + h, h < p, and let u be a NCE (of degree d). Moreover, 
consider the IVP 

(36) W(T) =F( (TW (T)), 

in the interval [TO, T + h = 4(to + h)], where 

F(U) (, x):--F(T, x, u(qO(T)), U'(O())). 

If z is the solution of (35), then 

(37) max _ Z(k)(T) - W(k)(T) = O(hd+l-k), k = 0..., d, 
To< T< o + h 

and all the higher derivatives of w remain uniformly bounded as h -O 0; 

(38) jz(To + h) - w(To + h) I = 0(hP+'); 

(39) 
f + 

G(T)Z (k)(T) _ w(k) (T)] dT = O(hP ), k = 0,1, 

for every sufficiently smooth matrix-valued function G. 

Proof. By (9) and (12) we have 

max y(k) (4(p ()) _ U(k)(p( T)) 

(40) TOT<TTO+h 

= max y(k)(t) - U(k)(t) = O(hd+l-k), k 0,1. 
to t to +h 

This yields 

max F(Y,)(T, X) -F(U)(T, X) = O(h d) 

uniformly with respect to x in any bounded set of R. 
By standard arguments on IVPs for ODEs, we get 

max I z'(T) - w'(T) I= O(hd). 
Tm < < o+h 

This easily implies (37) for every k = 0,..., d. The uniform boundedness of the 
higher derivatives of w (as h -O 0) follows by (11) and by the smoothness of 0 and 
F. 

Before proving (39), observe that (38) is a particular case for G(T) I (identity 
matrix) and k = 1. 
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If G is a sufficiently smooth matrix-valued function, then, by (35) and (40), the 
analogue of (34) for the IVP (36) becomes 

fro h 
G(T)[z'(T) 

- 
W'(T)] dT 

0 

= froh H(TO + X, x) [ F(Y)(x, z(x))(y(p(x)) - u(p(x))) 
To~ ~ ~~a 

a F(y)(x, z(x))(y'(O(x)) -u'((x))) dx 

+ O(h2d+1), 

where H(T, X) is a suitable matrix depending on w, the derivatives of which remain 

uniformly bounded as h -* 0. 
Since 2d > 2q > p, by (10) and (13) and by substituting x := 4(f), we obtain 

To h 
G(T)[Z'(T) - W'(T)] dT 

toh =J H(TO + h+()aFy(() ~4()(()US) 

ay'(Y)(W(O) Z(W()))Y'() - U"(4))].*( dt 

+O(h2d+l) - 

Hence (39) is proved for k = 1. Simple integration by parts, together with (38) and 
(39) for k = 1, finally yields (39) for k- 0. M 

Roughly speaking, the properties (9), (10), (11), (12) and (13) of the perturbation 
y - u are reproduced for the error z - w. In particular, the order p + 1 of the local 
error at the nodes is preserved, although the uniform rate of convergence to zero of 
the perturbation y - u can be lower. 

As an application of Theorem 10 we consider the following IVP for DDEs of 
neutral type: 

(y'(t) = f(t, y(t), y(t - a(t)), y'(t - a(t))), 

(41) y(t) (t) for t < to 
(y'(t) w (t) for t < to, 

where the delay a satisfies a(t) > & > 0. 
Recently, many papers have appeared in the literature on this subject, even in 

much more general contexts. Numerical methods for (41) have been investigated, for 
example, by Zverkina [15] and [16]. In the particular case that the equation is not of 
neutral type (i.e., f is independent of y'), we quote Oberle and Pesh [11], Arndt [1], 
Bellen and Zennaro [3] and the references therein. However, we do not treat the 
problem in detail here, and refer the reader to the cited papers. 

We want only to remark that, in solving (41), one generally has to approximate the 
solution y at the retarded argument with the same (or greater) order of accuracy of 
the method he is using. Nevertheless, for nonneutral equations, Bellen [2] has proved 
that, if one performs the one-step collocation method at i' Gaussian points (of order 
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2v), then he can use the collocation solution u to approximate the solution y at the 
retarded argument (which, by (5), is uniformly accurate of order v + 1 only) without 
losing the order 2v at the nodes, provided a particular choice of the mesh lA is made 
imposed by the delay a. The same result has been obtained by Vermiglio [12] for a 
one-step subregion method of order 2v - 2. 

They both assume the following hypothesis: 
CONDITION 11. The delay a is such that the functional argument k(t): t - a(t) is 

strictly increasing and sufficiently smooth together with its inverse 4,. 
We recall the cited restriction on the mesh lA. 
CONDITION 12. The mesh lA includes the breaking points (i.e., the points at which 

the solution y has discontinuities in its derivatives, caused by the delay a) and, 
moreover, each node of the mesh is mapped exactly into another one by the functional 
argument 4. 

By virtue of Theorem 10, similar results are valid for all R-K processes. More 
precisely, by induction on the intervals defined by the breaking points, one easily 
gets the following very general result. 

THEOREM 13. If Conditions 11 and 12 hold, then any R-K process (2)-(3) 
maintains its order p for the DDE (41), provided the solution y is approximated by a 
NCE at the retarded argument. 

Vermiglio [12] has observed that the method she proposes is equivalent to that 
v-stage R-K process of order 2V - 2 which is equivalent to the collocation method 
based on the Lobatto quadrature formula at v points. One can verify by some 
calculations that the continuous solution given by the subregion method is a NCE of 
minimal degree v - 1. Moreover, one need only observe that the collocation solution 
is, by Theorem 9, a NCE of degree v. 

Hence, we can conclude that the order results in [2] and in [12] are included in 
Theorem 13. 

Going back to ODEs such as (1), another application of the NCEs could be the 
tabulation of the solution y at nonnodal points. However, since in general the 
degree d of the NCEs is lower than the order p of the R-K method, the accuracy at 
nonnodal points is often worse. On the other hand, by (4) and (12), for the uniform 
order p to be attained, it is necessary and sufficient to have a NCE of degree 
d > p - 1. If d * is the maximum degree possible for a NCE of the R-K process 
(2)-(3), Theorem 5 states that d * < min{vP*, p }. More generally, only NCEs of 
minimal degree q are assured to exist, and this is the case for the one-step 
collocation method at v Gaussian points. 

For this method, the author [14] has proposed a sort of Iterated Defect Correction 
method in order to obtain uniform order 2v approximation. The procedure gives rise 
to a sequence of v - 1 uniform corrections Wk, k = 1,. .., v - 1, of the collocation 
solution u. These improved uniform approximations Wk are polynomials of degree 
< v + k which do not change the value of u at the endpoints to and to + h. 

Moreover, they satisfy (9) and (10) with d = v + k and p = 2v. They are found in 
an explicit way by making further evaluations of the function J. An algorithm 
describing the procedure for v = 2, 3 is given by Bellen and Zennaro [3]. In the 
general case, it consists in formally embedding the equivalent v-stage R-K process 
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(2)-(3) into another "larger" equivalent one, which has further stages g('), i = v + 
1, ..., v', with corresponding weights b1 = 0. These further stages are utilized only to 
compute the improved uniform approximations Wk, which turn out to be NCEs of 
the new "larger" R-K process. 

Furthermore, a last uniform correction wv is considered. It is a NCE of a still 
"larger" equivalent R-K process and is utilized to give an accurate estimation of the 
local discretization error of the original collocation method. 

One can easily see that these results can be generalized to all R-K methods. By 
starting from a NCE of degree d *, one performs p - d * - 1 uniform corrections, 
by applying the same procedure as in [14], in order to find a NCE of degree p - 1 of 
a "larger" equivalent R-K process. The cost is, obviously, some extra evaluations of 
the function f. In this way one reaches uniform order p approximation. 

A last uniform correction yields a NCE of degree p of a still "larger" equivalent 
R-K process, which can be utilized to estimate the local discretization error of the 
original R-K method. In fact we have the following theorem. 

THEOREM 14. If u is a NCE of degree p of a R-K process (2)-(3) of order p, then 

(42) Yo + 1?0h f (t, u(t)) dt - = y(to + h) - 
- 

+ O(hP+2). 

Proof. By (12) with d = p and by the smoothness of f, we get 

f (t, u(t)) = y'(t) - f (t, y(t)) + f (t, u(t)) 
= y'(t) + 0(hP+ ), 

and this implies (42). 0 
Therefore, by using a quadrature formula which is exact for polynomials of degree 
P p, the left-hand side of (42) gives the desired estimation of the local discretization 

error (it is convenient to use Gauss, or Radau, or Lobatto quadrature formulas). 
This manner of estimating the local discretization error is not convenient for 

explicit R-K processes, since the well-known R-K-Fehlberg and R-K-Merson meth- 
ods certainly require less evaluations of the function f. On the other hand, if one 
uses an implicit R-K method (e.g., when some stiffness is present), then this 
procedure can be quite practical, if compared to Richardson's extrapolation tech- 
nique. 
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